
源码入口

spring-cloud-alibaba-nacos-
discovery.jar里面的spring.factories文

件里的
NacosDiscoveryAutoConfiguration

NacosDiscoveryAutoConfiguration

NacosServiceRegistry

NacosRegistration

NacosAutoServiceRegistration@Bean

@Bean

@Bean

ApplicationListern

AbstractAutoServiceR
egistration

实现

继承

onApplicationEvent

实现ApplicationListener接口的类，
spring容器启动的时候会调用事件处理方法

bind(event)

start()

register()

this.serviceRegistry.re
gister(getRegistration

())

client

namingService.registe
rInstance()

服务注册

registerInstance()

beatReactor.addBeatI
nfo

if(instance.isEphemeral()){
添加一个延时执行的定时心跳任务BeatTask

}

serverProxy.registerS
ervice

BeatT ask
实现了

Runable是
个线程

serverProxy.sendB
eat(beatInfo)

reqAPI(/instance/beat)

调用server的实例
发送心跳接口

（ HttpMethod.PUT）

NacosNamingService.
getAllInstances()服务发现

hostReactor.getServic
eInfo

getServiceInfo0
（serviceName,

clusters）

获取客户端的服务实例缓存信息

 updateServiceNow(s
erviceName, clusters);

如果缓存为空，调用server接口
，获取最新服务数据

UpdateTask

定时获取服务端最新服务数据
并更新到本地的任务

serviceInfoMap
客户端实例缓存Map

serverProxy.queryList(
serviceName, clusters,
pushReceiver.getUDPP

ort(), false);

reqAPI(/instance/list)

调用server的服务发现接口
HttpMethod.GET

传入的参数里面有个客户端的udp端口，

这个是方便服务端实例有变化了
通过upd方式同步给客户端

从Nacos官网上找到的客户端发现的代
码，这里面先看底层逻辑，实际上服务
发现是在第一次调用服务接口时根据服

务名
去服务端获取。

InstanceController.beat

 serviceManager.regist
erInstance(namespaceI

d, serviceName,
instance)

如果实例不存在重新注册
（如网路不通导致实例在服务端被下线

或者服务端重启临时实例丢失）

service.processClientBe
at(clientBeat);

instance.setLastBeat(Sy
stem.currentTimeMillis

());

立即开启一个任务
ClientBeatProcessor，

更新客户端实例的最后心跳时间

InstanceController.list

doSrvIPXT

service.srvIPs

 allInstances.addAll(persistentInsta
nces);

 allInstances.addAll(ephemeralI
nstances);

返回的就是注册时写入的实例属性

Serve
r

InstanceController.regist
er

serviceManager.registerI
nstance

createEmptyService

addInstance(namespaceI
d, serviceName,

instance.isEphemeral(),
instance)

将新注册的实例加入对应服务
的service的实例列表中去

 consistencyService.put(k

ey, instances);

将service对应的全量实例instances
写到内存注册表中

DelegateConsistencyServi
ceImpl.put

mapConsistencyService(k
ey).put(key, value)

ephemeralConsistencyS
ervice

DistroConsistencyServic
eImpl.put(key,value)

如果是临时实例数据

阿里自己内部实现API模式的Distro协议

onput（key,value）

1、将注册实例更新到内存注册表

 dataStore.put(key,
datum)

集群方式暂不讨论

2、同步实例信息到nacos.server集群其它节点

putServiceAndInit (servic
e)

putService(service)

service.init ()

构建双层Map的注册表结构

Map<String,Map<String,Service>> serviceMap
(Map<namespace,Map<group::serviceName,Service>>)

serviceMap.get(service.getNamespaceId()).put(service.ge
tName(), service)将Service放到内层Map中去

HealthCheckReactor.sche
duleCheck(clientBeatChe

ckTask);

ClientBeatCheckTask

定时执行任务

service.allIPsrun方法

检测每一个实例是否为健康状态,
如果某个实例超过15s服务端没有收到心跳

则将它的healty属性设置为false

deleteIP(instance)

如果某个实例超过30s没有发送心跳
服务端直接剔除该实例

（被剔除的实例如果恢复发送心跳则会重新注册）
调用server的实例注册接口
（HttpMethod.POST）

reqAPI(/instance/)

Instance.setHealthy(false
)

reqAPI(/instance/)

调用servers实例注销接口
HttpMethod.DELETE

serviceManager.removeInstance(

substractIpAddresses
(service, ephemeral, ips)

 consistencyService.put(k

ey, instances);

notifier.addTask(key,
ApplyAction.CHANGE)

tasks.add(Pair.with(datu
mKey, action))

往阻塞对列tasks里反放入注册实例数据

源码精髓：
很多开源框架为了提升操作性能会大量使用异
步任务及内存队列操作，这些操作本身并不需
要写入之后立即成功，用这种方式对提升性能

有很大操作

DistroConsistencyServic
eImpl.init

Spring容器一启动，会将该类的对
象放到Spring容器中管理，成为一

个bean对象

notifyer.run()

while(true){
tasks.take()

}

用一个死循环从阻塞队tasks中拿实例数据处理

listener.onChange(datumKey,
dataStore.get(datumKey).value)

listener.onChange(datumKey,
dataStore.get(datumKey).value)

updateIPs(value.getInstanceList(),
KeyBuilder.matchEphemeralInstanceListKe

y(key));

将注册实例信息更新到注册表内存结构里去

 clusterMap.get(entry.getKey()).updateIPs
(entryIPs, ephemeral);

ephemeralInstances = toUpdateInstances;

将临时的注册实例更新到了
cluster的ephemeraInstance属性上去，
服务发现临时实例最终从内存里找到的就是

这个属性

 getPushService().serviceChanged(this);

发布服务变化事件

this.applicationContext.
publishEvent(new

ServiceChangeEvent(this, service));

PushService.onApplicationEvent()

udp方式将服务变动
通知给订阅客户端

Nacos这种推送模式，对于Zookeeper那种通过tcp
长连接来说会节约很多资源，就算有你大量的节点更
新也不会让Nacos出现太多的性能瓶颈，在Nacos

客户端如果接收到了udp消息会返回一个Ack,如果一
定时间Ncaos-Server，没有接收到ACK,那么

Nacos-Server会继续重试（一共会重试10次），当
超多一定的次数之后，就不在重发了。虽然通过upd
不能保证数据真正的到订阅者，但是Ncaos还有定时

轮训作为兜底，不需要担心数据不会更新情况。
Nacos通过这两种手段，既保证了实时性，又保证了

数据不会漏掉的安全性

源码精髓：
Nacos合格更新注册表内存方式，为了防止读写并发冲

突，大量的运用了CopyOnWrite思想来防止读写并发冲
突，具体做法就是把原内存注册表的数据结构拷贝一份，

操作完后在最终替换会真正的注册表内存中去。
Eureka防止读写并发冲突用的方法是注册表的多级缓存
结构，只读缓存，读写缓存，内存注册表，各级缓存之间

定时同步，因此客户端感知及时性不如Naccos

User

1、name zhangsan

2、balance 1000

1、name lisi

2、balance 2000

